- PII
- S3034526XS0134347525050044-1
- DOI
- 10.7868/S3034526X25050044
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 5
- Pages
- 268-284
- Abstract
- Биология моря, Genetic Diversity of the Chemosymbiotic Bivalve Calyptogena pacifica Dall, 1891 (Vesicomyidae: Pliocardiinae)
- Keywords
- восстановительные биотопы метановые высачивания гидротермы митохондриальная ДНК связь популяций Тихий океан
- Date of publication
- 03.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 10
References
- 1. Баранов Б.В., Вернер Р., Рашидов В.А. и др. Морфология подводного вулкана Пийпа в Командорской котловине по данным съемки многолучевым эхолотом // Вестн. КРАУНЦ. Науки о Земле. 2021. № 2. Вып. 50. С. 6–21.
- 2. Галкин С.В., Мордухович В.В., Крылова Е.М. и др. Исследования экосистем гидротермальных выходов и холодных высачиваний в Беринговом море (82-й рейс научно-исследовательского судна “Академик М.А. Лаврентьев”) // Океанология. 2019. Т. 59. № 4. С. 687–690.
- 3. Гордеева Н.В., Дриц А.В., Флинт М.В. Генетическое разнообразие копеподы Limnocalanus macrurus арктических морей России // Океанология. 2019. Т. 59. № 6. С. 998–1007.
- 4. Крылова Е.М. Хемосимбиотрофные двустворчатые моллюски плиокардиины (Vesicomyidae: Pliocardiinae) Тихого океана / Матер. Всерос. конф. “Морская биология в 21 веке: систематика, генетика, экология морских организмов” (памяти академика О.Г. Кусакина) (Владивосток, 20–23 сентября 2022 г.). С. 184–185.
- 5. Крылова Е.М., Галкин С.В., Мордухович В.В. и др. Новый регион восстановительных сообществ Мирового океана // Природа. 2019. № 6. С. 24–29.
- 6. Полоник Н.С. Изучение газонасыщенного гидротермального флюида подводного вулкана Пийпа / Матер. XXI регион. науч. конф. “Вулканизм и связанные с ним процессы”. Петропавловск-Камчатский: ИВиС ДВО РАН. 2018. С. 197–199.
- 7. Полоник Н.С. Источники метана на Корякском склоне Берингова моря // Природа. 2019. № 6. С. 36–43.
- 8. Сагалевич А.М., Торохов П.В., Галкин С.В. и др. Гидротермальные проявления подводного вулкана Пийпа (Берингово море) // Изв. РАН. Сер. Геология. 1992. № 9. С. 104–114.
- 9. Селиверстов Н.И. Геологическое строение и гидротермальная активность подводного вулкана Пийпа // Геодинамика зоны сочленения Курило-Камчатской и Алеутской островных дуг. Петропавловск-Камчатский: КамГУ им. Витуса Беринга. 2009. 191 с.
- 10. Ягодина В.Д., Брыков В.А. Генетическое разнообразие мтДНК дальневосточного трепанга Apostichopus japonicus (Selenka, 1867) (Echinodermata: Holothuroidea) в заливе Петра Великого Японского моря // Биол. моря. 2023. Т. 49. № 1. С. 45–55.
- 11. Amano K., Miyajima Y., Jenkins R.G., Kiel S. The Miocene to Recent biogeographic history of vesicomyid bivalves in Japan, with two new records of the family // Nautilus. 2019. V. 133. P. 48–56.
- 12. Audzijonyte A., Krylova E.M., Sahling H., Vrijenhoek R.C. Molecular taxonomy reveals broad trans-oceanic distributions and high species diversity of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) in chemosynthetic environments // Syst. Biodiversity. 2012. V. 10. P. 403–415.
- 13. Barry J.P., Kochevar R.E., Baxter C.H. The influence of pore-water chemistry and physiology in the distribution of vesicomyid clams at cold seeps in Monterey Bay: implications for patterns of chemosynthetic community organization // Limnol. Oceanogr. 1997. V. 42. P. 318–328.
- 14. Breusing C., Johnson S.B., Tunnicliffe V., Vrijenhoek R.C. Population structure and connectivity in Indo-Pacific deep-sea mussels of the Bathymodiolus septemdierum complex // Conserv. Genet. 2015. V. 16. P. 1415–1430.
- 15. Chen C., Okutani T., Liang Q., Qiu J.-W. A noteworthy new species of the family Vesicomyidae from the South China Sea (Bivalvia: Glossoidea) // Venus. 2018. V. 76. № 1–4. P. 29–37. http://doi.org/10.18941/venus.76.1-4_29
- 16. Cheng J., Hui M., Li Y., Sha Z. Genomic evidence of population genetic differentiation in deep-sea squat lobster Shinkaia crosnieri (crustacea: Decapoda: Anomura) from northwestern Pacific hydrothermal vent and cold seep // Deep-Sea Res. Pt. I. 2020. V. 156. Art. ID 103188. https://doi.org/10.1016/j.dsr.2019.103188
- 17. Cruaud P., Vigneron A., Pignet P. et al. Comparative study of Guaymas Basin microbiomes: cold seeps vs. hydrothermal vents sediments // Front. Mar. Sci. 2017. V. 4. Art. ID 417. https://doi.org/10.3389/fmars.2017.00417
- 18. DeLeo D.M., Morrison C.L., Sei M. et al. Genetic diversity and connectivity of chemosynthetic cold seep mussels from the U.S. Atlantic margin // BMC Ecol. Evol. 2022. V. 22. Art. ID 76. https://doi.org/10.1186/s12862-022-02027-4
- 19. Demina L.L., Galkin S.V., Krylova E.M. et al. Some biogeochemical characteristics of the trace element bioaccumulation in the benthic fauna of the Piip Volcano (the southwestern Bering Sea) // Minerals. 2021. V. 11. Art. ID 1233. https://doi.org/10.3390/min11111233
- 20. Demina L.L., Galkin S.V., Krylova E.M. et al. Trace metal biogeochemistry in the methane seeps on the Koryak slope of the Bering Sea // Deep-Sea Res. Pt. II. 2022. V. 206. Art. ID 105219. https://doi.org/10.1016/j.dsr2.2022.105219
- 21. Dubilier N., Bergin C., Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis // Nat. Rev. Microbiol. 2008. V. 6. P. 725–740.
- 22. Duperron S., Gaudron S.M., Rodrigues C.F. et al. An overview of chemosynthetic symbioses in bivalves from the North Atlantic and Mediterranean Sea // Biogeosciences. 2013. V. 10. P. 3241–3267.
- 23. Excoffier L., Lischer H.E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. № 3. P. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
- 24. Fu Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection // Genetics. 1997. V. 147. № 2. P. 915–925. https://doi.org/10.1093/genetics/147.2.915
- 25. Goffredi S.K., Hurtado L.A., Hallam S., Vrijenhoek R.C. 2003. Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the “pacifica/ lepta” species complex // Mar. Biol. 2003. V. 142. P. 311–320.
- 26. Grant W.S. Problems and cautions with sequence mismatch analysis and bayesian skyline plots to infer historical demography // J. Hered. 2015. V. 106. № 4. P. 333–346. https://doi.org/10.1093/jhered/esv020
- 27. Guillon E., Menot L., Decker C., Krylova E., Olu K. The vesicomyid bivalve habitat at cold seeps supports heterogeneous and dynamic macrofaunal assemblages // Deep-Sea Res. Pt. I. 2017. V. 120. P. 1–13. http://dx.doi.org/10.1016/j.dsr.2016.12.008
- 28. Hurtado L.A., Mateos M., Lutz R.A., Vrijenhoek R.C. Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica // Appl. Environ. Microbiol. 2003. V. 69. P. 2058–2064.
- 29. Jang S.-J., Cho S.-Y., Li C. et al. Geographical subdivision of Alviniconcha snail populations in the Indian Ocean hydrothermal vent regions // Front. Mar. Sci. 2023. V. 10. Art. ID 1139190. https://doi.org/10.3389/fmars.2023.1139190
- 30. Jiang S., Li Z., Li J. et al. Analysis of genetic diversity and structure of eight populations of Nerita yoldii along the coast of China based on mitochondrial COI gene // Animals. 2024. V. 14. № 5. Art. ID 718. https://doi.org/10.3390/ani14050718
- 31. Johnson S.B., Krylova E.M., Audzijonyte A. et al. Phylogeny and origins of chemosynthetic vesicomyid clams // Syst. Biodiversity. 2017. V. 15. № 4. P. 346–360.
- 32. Karl S.A., Schutz S., Desbruyères D. et al. Molecular analysis of gene flow in the hydrothermal-vent clam Calyptogena magnifica // Mol. Mar. Biol. Biotechnol. 1996. V. 5. № 3. P. 193–202.
- 33. Kojima S., Fujikura K., Okutani T. Multiple trans-Pacific migrations of deep-sea vent/seep-endemic bivalves in the family Vesicomyidae // Mol. Phylogenet. Evol. 2004. V. 32. P. 396–406.
- 34. Kojima S., Tsuchida E., Numanami H. et al. Synonymy of Calyptogena solidissima with Calyptogena kawamurai (Bivalvia: Vesicomyidae) and its population structure revealed by mitochondrial DNA sequences // Zool. Sci. 2006. V. 23. № 10. P. 835–842. http://dx.doi.org/10.2108/zsj.23.835
- 35. Kokarev V., Dufour S.C., Raeymaekers J.A.M. et al. Thyasirid species composition (Bivalvia: Thyasiridae) and genetic connectivity of Parathyasira equalis (A.E. Verrill & K.J. Bush, 1898) in deep basins of sub-Arctic fjords // BMC Ecol. Evol. 2024. V. 24. Art. № 91. https://doi.org/10.1186/s12862-024-02278-3
- 36. Kozlov A.M., Darriba D., Flouri T. et al. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference // Bioinformatics (Oxford, England). 2019. V. 35. № 21. P. 4453–4455. https://doi.org/10.1093/bioinformatics/ btz305
- 37. Krylova E.M., Sahling H. Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae) // J. Molluscan Stud. 2006. V. 72. № 4. P. 359–395.
- 38. Krylova E.M., Sahling H. Vesicomyidae (Bivalvia): current taxonomy and distribution // PloS One. 2010. V. 5. № 4. Art. ID e9957. https://doi.org/10.1371/journal.pone.0009957
- 39. Krylova E.M., Sahling H. A new genus Turneroconcha (Bivalvia: Vesicomyidae: Pliocardiinae) for the giant hydrothermal vent clam ‘Calyptogena’ magnifica // Zootaxa. 2020. V. 4808. № 1. P. 79–100. https://doi.org/10.11646/zootaxa.4808.1.4
- 40. LaBella A.L., Van Dover C.L., Jollivet D., Cunningham C.W. Gene flow between Atlantic and Pacific Ocean basins in three lineages of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) and subsequent limited gene flow within the Atlantic // Deep-Sea Res. Pt. II. 2017. V. 137. № 1. P. 307–317. https://doi.org/10.1016/j.dsr2.2016.08.013
- 41. Lanfear R., Frandsen P.B., Wright A.M. et al. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses // Mol. Biol. Evol. 2017. V. 34. P. 772–773.
- 42. Leigh J.W., Bryant D. POPART: full-feature software for haplotype network construction // Methods Ecol. Evol. 2015. V. 6. P. 1110–1116.
- 43. Levin L.A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes // Oceanogr. Mar. Biol. Annu. Rev. Boca Raton: CRC Press-Taylor & Francis Group. 2005. V. 43. P. 1–46.
- 44. Levin L.A., Baco A.R., Bowden D.A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence // Front. Mar. Sci. 2016. V. 3. Art. ID 72. https://doi.org/10.3389/fmars.2016.00072
- 45. Li Y., Wang L., Wang Y. et al. Population genetic structure and historical demography of Saccostrea echinata in the Northern South China sea and Beibu Gulf // Sci. Rep. 2025. V. 15. Art. ID8261. https://doi.org/10.1038/s41598-025-92747-6
- 46. Methou P., Ogawa N.O., Nomaki H. et al. Genetic connectivity and isotopic niches of alvinocaridid shrimps from chemosynthetic habitats in Aotearoa/New Zealand, with a new Alvinocaris species // Mar. Ecol.: Prog. Ser. 2024. V. 739. P. 85–109. https://doi.org/10.3354/meps14611
- 47. Ogura T., Watanabe H.K., Chen C. et al. Population history of deep-sea vent and seep Provanna snails (Mollusca: Abyssochrysoidea) in the northwestern Pacific // Peer J. 2018. V. 6. Art. ID e5673. https://doi.org/10.7717/peerj.5673
- 48. Okutani T., Hashimoto J., Fujikura K. A new species of vesicomyid bivalve associated with hydrothermal vents near Amami-Oshima Island, Japan // Venus. 1992. V. 51. P. 225–233.
- 49. Ozawa G., Shimamura S., Takaki Y. et al. Ancient occasional host switching of maternally transmitted bacterial symbionts of chemosynthetic vesicomyid clams // Genome Biol. Evol. 2017. V. 9. № 9. P. 2226–2236. https://doi.org/10.1093/gbe/evx166
- 50. Peek A.S., Gustafson R.G., Lutz R.A., Vrijenhoek R.C. Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): results from the mitochondrial cytochrome oxidase subunit I // Mar. Biol. 1997. V. 130. P. 151–161.
- 51. Perez M., Breusing C., Angers B. et al. Divergent paths in the evolutionary history of maternally transmitted clam symbionts // Proc. R. Soc. B. 2022. V. 289. Art. ID 20212137. https://doi.org/10.1098/rspb.2021.2137
- 52. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C. et al. DnaSP 6: DNA Sequence Polymorphism analysis of large datasets // Mol. Biol. Evol. 2017. V. 34. № 12. P. 3299–3302. https://doi.org/10.1093/molbe v/msx248
- 53. Rybakova E., Krylova E., Mordukhovich V. et al. Methane seep communities on the Koryak slope in the Bering Sea // Deep-Sea Res. Pt. II. 2022. V. 206. Art. ID 105203. https://doi.org/10.1016/j.dsr2.2022.105203
- 54. Rybakova E., Krylova E., Mordukhovich V. et al. Megaand macrofauna of the hydrothermally active submarine Piip Volcano (the southwestern Bering Sea) // Deep-Sea Res. Pt. II. 2023. V. 208. Art. ID 105268. https://doi.org/10.1016/j.dsr2.2023.105268
- 55. Shen Y., Kou Q., Chen W. et al. Comparative population structure of two dominant species, Shinkaia crosnieri (Munidopsidae: Shinkaia) and Bathymodiolus platifrons (Mytilidae: Bathymodiolus), inhabiting both deep-sea vent and cold seep inferred from mitochondrial multi-genes // Ecol. Evol. 2016. V. 6. № 11. P. 3571–3582. https://doi.org/10.1002/ece3.2132
- 56. Smith C.R., Bernardino A.F., Baco A. et al. Seven-year enrichment: macrofaunal succession in deep-sea sediments around a 30 tonne whale fall in the Northeast Pacific // Mar. Ecol.: Prog. Ser. 2014. V. 515. P. 133–149. https://doi.org/10.3354/meps10955
- 57. Stecher J., Tunnicliffe V., Türkay M. Population characteristics of abundant bivalves (Mollusca, Vesicomyidae) at a sulphide-rich seafloor site near Lihir Island, Papua New Guinea // Can. J. Zool. 2003. V. 81. P. 1815–1824.
- 58. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism // Genetics. 1989. V. 123. P. 585–595.
- 59. Teixeira S., Olu K., Decker C. et al. High connectivity across the fragmented chemosynthetic ecosystems of the deep Atlantic Equatorial Belt: efficient dispersal mechanisms or questionable endemism? // Mol. Ecol. 2013. V. 22. № 18. 4663–4680. https://doi.org/10.1111/mec.12419
- 60. Tran Lu Y.A., Ruault S., Daguin-Thiébaut C. et al. Subtle limits to connectivity revealed by outlier loci within two divergent metapopulations of the deep-sea hydrothermal gastropod Ifremeria nautilei // Mol. Ecol. 2022. V. 31. № 10. P. 2796–2813. https://doi.org/10.1111/mec.16430
- 61. Tunnicliffe V., Breusing C. Redescription of Bathymodiolus septemdierum Hashimoto and Okutani, 1994 (Bivalvia, Mytilida, Mytilidae), a mussel broadly distributed across hydrothermal vent locations in the western Pacific and Indian Oceans // Zootaxa. 2022. V. 5214. № 3. P. 337–364.
- 62. Tunnicliffe V., Juniper S.K., Sibuet M. Reducing environments of the deep-sea floor // Ecosystems of the deep oceans / Ed. P.A. Tyler. Ecosystems of the World. Amsterdam: Elsevier. 2003. V. 28. P. 81–110.
- 63. van der Heijden K., Petersen J.M., Dubilier N., Borowski C. Genetic connectivity between North and South Mid-Atlantic Ridge chemosynthetic bivalves and their symbionts // PloS One. 2012. V. 7. № 7. Art. ID 39994. https://doi.org/10.1371/journal.pone.0039994
- 64. Van Dover C.L. The ecology of deep-sea hydrothermal vents. Princeton, N. J.: Princeton Univ. Press. 2000. 415 p.
- 65. Vrijenhoek R.C. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations // Mol. Ecol. 2010. V. 19. № 20. P. 4391–4411. https://doi.org/10.1111/j.1365-294X.2010.04789.x
- 66. Wang X., Kong L., Chen J. et al. Phylogeography of bivalve Meretrix petechialis in the Northwestern Pacific indicated by mitochondrial and nuclear DNA data // PLoS One. 2017. V. 12. № 8. Art. ID e0183221. https://doi.org/10.1371/journal. pone.0183221
- 67. Xu T., Sun J., Watanabe H.K. et al. Population genetic structure of the deep-sea mussel Bathymodiolus platifrons (Bivalvia: Mytilidae) in the Northwest Pacific // Evol. Appl. 2018. V. 11. P. 1915–1930. https://doi.org/10.1111/eva.12696
- 68. Yang C.H., Tsuchida S., Fujikura K. et al. Connectivity of the squat lobsters Shinkaia crosnieri (Crustacea: Decapoda: Galatheidae) between cold seep and hydrothermal vent habitats // Bull. Mar. Sci. 2016. V. 92. № 1. P. 17–31. https://doi.org/10.5343/bms.2015.1031
- 69. Young C.M., Sewell M.A., Tyler P.A., Metaxas A. Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the role of larval dispersal // Biodiversity Conserv. 1997. V. 6. P. 1507–1522.
- 70. Zelada-Mázmela E., Reyes-Flores L.E., Sánchez-Velásquez J.J. et al. Population structure and demographic history of the gastropod Thaisella chocolate (Duclos, 1832) from the Southeast Pacific inferred from mitochondrial DNA analyses // Ecol. Evol. 2022. V. 12. Art. ID e9276. https://doi.org/10.1002/ece3.9276
- 71. Zhang Y., Cheng J., Sha Z., Hui M. Population genetic structure and implication for adaptive differentiation of the snail (Gastropoda, Provannidae) in deep-sea chemosynthetic ecosystems // Zool. Scr. 2024. V. 53. № 2. P. 192–206. https://doi.org/10.1111/zsc.12634